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and pa is obtained from az by reversing the sign of ~. It limit X/y<<l. The az term of (42) can be neglected if
is obvious from (41) that ~z is much larger than C22for only the lowest order of A/~ is taken into account. In
A/y<<l. For this reason an expansion of R in powers of this approximation

&o converges very slowly, but an expansion of l/R in

powers of 8W should converge rapidly. If higher powers 2(k/7)%02
B2=A= . (43)

of 13ware again neglected, (14) is obtained from (40) and b2

()
1+:+;+ 1+~

2irM

()

’22 a2 H + 21rM
= /3, – CYz.

T
(42)

Eq. (15) is now obtained by expressing H in terms of
A simple expression for the bandwidth is obtained in the the resonance frequency.

Analysis of Microwave Measurement Techniques by

Means of Signal Flow Graphs*
J. K. HUNTON~

Summary—Microwave measurement techniques can be analyzed
more simply by using signal flow graphs instead of the customary
scattering matrices to describe the microwave networks used in the
measuring system. Thk is because the flow graphs of indkidual
networks are simply joined together when the networks are cas-
caded and the solution for the system can be written down by in-
spection of the over-all flow graph by application of the nontouchmg
loop rule. Thk paper reviews the method of setting up flow graphs
of microwave networks and the rule for their solution. A single di-
rectional-coupler reflectometer system for measuring the reflection
coefficient of a load is then analyzed by this method. The analysis
shows how auxiliary tuners can be used to cancel residual error
terms in the measurement of the magnitude of the reflection coeffi-
cient at a particular frequency. The analysis also shows how an addl-

tional tuner can be used to measure the phase angle of the reflection
coefficient. These reflectometer techniques are particularly useful
in the measurement of very small reflections.

INTRODUCTION

T

HE signal flow graph is a method of writing a set

of equations, whereby the variables are repre-

sented by points and the interrelations by directed
lines giving a direct picture of signal flow. The algebra

of flow graphs leading to solutions by direct inspection

has been developed by S. J. Nlason and others at the

IJfassachusetts Institute of Technology.1’2 When micro-

wave network equations are written in scattering matrix

form the corresponding flow graph is particularly useful

because, in this case, the flow graph of a system of cas-

* Manuscript received by the PGMT, September 14, 1959; re-
vised manuscript received November 2.5,1959.

t Hewlett-Packard Co., Palo Alto, Calif.
1S. J. Mason, “Feedback theory—some properties of signal

flow graphs,” PROC. IRE, vol. 41, p. 1144-1156; September 1953.
2 S. J. Mason, “Feedback theory—further properties of signal

flow graphs, ” PROC. IRE, vol. 44, pp. 920-926; July, 1956.

caded networks k constructed simply by joining to-

gether the flow graphs of the individual networks, and

the solution is then available directly.

One of the best applications of the flow graph method

is in the analysis of measuring techniques and the de-

termination of residual errors. It is the intention here to

review the mechanics of the method and to apply it in

analyzing the microwave reflectometer system used for

measuring the reflection coefficient of a load. This sys-

tem has been in general use for some time,3 and has been

analyzed recently by Engen and Beatty4 who showed

how tuners could be used to reduce residual errors to a

negligible value when measuring the magnitude of the

reflection coefficient. Their result will be derived here by

the flow graph method. In addition, a technique for

measuring the phase angle of the reflection coefficient

will be presented.

ONE- AND TWO-PORT NETWORK FLOW GRAPEIS

Fig. 1 shows some simple flow graphs used as building

blocks. In Fig. 1(a) the general two-port network is

shown as specified by its scattering matrix coefficients.

Here al and az are the complex entering wave ampli-

tudes, while bl and bt are the outgoing wave amplitudes

at ports 1 and 2 of the network. These are represented
in the flow graph as points or “nodes.” The nodes are

3 J. K. Hunton and N. L. Pappas, “The -hp- microwave reflectOrn-
eters, ” Hewlett-Packard J., vol. 6, pp. 1–7; September–October;
1954.

1 G. F. Engen and R. W. Beatty, “Microwave reflectometer tech-
“ IRE TRANS. ON MICROWAVE THEORY AND TECHiWQUES,

&o~&TT-7, pp. 351–355; July 1959.
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Fig. l—(a) Two-port network: (b) Load. (c) Generator.
detector. (e) Lossless line length. (f) Shunt admittance:
impedance.

related to one another by directed lines (signal flow)

marked with appropriate coefficients. These are the

scattering coefficients SII, S12, S21, S22 and their mean-

ing is derived from

bl = Sllal + S12a2,

bz = S21al + S22a2,

Here SIl is the reflection coefficient bl/al at port 1

when port 2 is terminated in a matched load (in this

case az = O). SZZ is the reflection coefficient bJa2 at port 2

when port 1 is matched (al= O). S1s is the transmission

coefficient bJa2 from port 2 to port 1 when port 1 is

matched (al = O), and Szl is the transmission coefficient

bz/al from port 1 to port 2 when port 2 is matched

(al = O). In all reciprocal networks SIZ = S21. The value

of each node in the flow graph is the sum of all signals

entering it, each signal being the value of the node from

which it comes multiplied by its path coefficient. The

independent variables al and a2 in the equations repre-

sented by the flow graph are characterized by signal

flow directed into the graph.

Fig. 1 (b) depicts a termination or load whose r-eflec-

tion coefficient is rL.

Fig. 1 (c) shows a mismatched generator. Here E is the

wave amplitude at the port when the generator sees a

matched load (a = O) and r~ is the reflection coef%cient

looking into the port when E is zero.

Fig. 1 (d) shows a video detector (such as a crystal or

a barretter mount). l?d is the detector reflection coeffi-

cient at the port, and h is a scalar conversion efficiency

relating the incoming wave amplitude to a meter reacl-

ing M. It is assumed that this meter is calibrated to take

account of the detector law so that k is independent of

signal level. It is also assumed that 17~ is independent of

signal level. (Both these conditions are satisfied very

nearly with detectors used in reflectometer systems

when used in their proper operating range.)

Fig. 1 (e) depicts a length of Iossless transmission line.

Fig. 1 (f) is a shunt discontinuity y such as a junction

between two lines or a probe which can be considered as

a shunt admittance. The coefficient S1l = S22 = I’ is the

reflection coefficient which would be measured if the

discontinuity were followed by a matched load. The co-

efficient S12 = S21 = 1 +17 follows from the fact that the

net wave amplitudes on either side of the discontinuity

must be equal. The coefficient r is related to the nor-

malized shunt admittance Y by

Y
r=–—

Y+2”

Fig. 1 (g) is a lumped series impedance. Here the co-

efficient I’ is related to the normalized series impedance

Z by

(d) Video z
, (g) Series r=—

Z+2”
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THE “NONTOUCHING LooP” RULE

FVhen networks are cascaded it is only necessary to

cascade the flow graphs since the outgoing wave from

one network is the incoming wave to the next. This is

demonstrated in Fig. 2 where a network is placed be-

tween a generator and a load. The system now has only

one independent variable, the generator amplitude E.

The flow graph contains paths and loops. A “path” is a

series of directed lines followed in sequence and in the

same direction in such a way that no node is touched

more than once. The value of the path is the product of

all coefficients encountered en route. In the figure there

is one path from E to bz. It has a value S21. There are

two paths from E to h, namely S11 and S2J7J12. A first

bl S1l(I – s22rL) + s21rLs12
——

al 1 – S22rL

Note that the generator flow graph is unnecessary

when solving for bl/al, and the loops associated with it

are deleted when writing this solution. It is worth men-

tioning at this point that second- and higher-order loops

can quite often be neglected while writing down the solu-

tion if one has orders of magnitude for the various co-

efficients in mind.

THREE-PORT NETWORK

order ‘{loop” is a series of directed lines coming to a

closure when followed in sequence and in the same direc-
The flow graph of the general three-port network

tion with no node passed more than once. The value of
with the third port terminated by a detector is shown in

the loop is the product of all coefficients encountered en
Fig. 3(a). The equations described by the flow graph are

route. A second-order loop is the product of any two bl = $’llal + S12a2 + Sltat,
first-order loops which do not touch at any point and a

third-order loop is the product of any three first-or- bz = S21al + S22a2 + S23a3,

der loops which do not touch, and so on. In Fig. 2 b3 = S31al + S32a2 + S~3a3,
there are three first-order loops, namely, rUSn, S#~,

and r~s21r L&2 and there is one second-order loop a3 = b3rd,

rgs11s22rL. ~ == kdt,
The solution of a flow graph is accomplished by appli-

cation of the nontouching loop rule, b’d which, written (note also that SIZ = S2,, S13 = St,, S~~ = S32 for reciprocal

symbolically, is networks).

PI(I –~L(l)(l) +~L(2)(l)– ~L(3)(l)+ . ..)+ P2(l–~L(l) (’)+ ~L(2) (2) ~ . .)+ P3(1” “ “)
T=

__ ——— —

l–~L(l) +~L(2)–~ L(3)+...

Here ~L(l) denotes the sum of all first-order loops.

~_L(2) denotes the sum of all second-order loops and so

on. Pl, Pz, Ps, etc., are the values of all the various

paths which can be followed from the independent vari-

able node to the node whose value is desired. ~~( 1) (~)

denotes the sum of all first-order loops which do not

touch path P1 at any point, and so on. In other words,

each path is multiplied by the factor in brackets which

involves all the loops of all orders which that path does

not touch. T is a general symbol representing the ratio

between the dependent variable of interest and the inde-

pendent variable. This process is repeated for each in-

dependent variable of the system and the results are

summed.

As examples of the application of the rule, the trans-

mission bJE and the reflection coefficient bl/al are

written as follows:

5 C. S. Lorens, “A Proof of the Nonintersecting Loop Rule for the
Solution of Linear Equations by Flowgraphs, ” Res. Lab. of Electron-
ics, M. I. T., Cambridge, Mass., Quart. Prog. Rept., pp. 97–102;
January, 1956.

eW. W. Happ, “Lecture notes on signal flowgraphs, ” from “Anal-
ysis of Transistor Circuits, ” Extension Course, University of Cali-
fornia, Berkeley, Catalogue No. 834AB.

Fig. 2—Cascading of a network between load and generator.
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Fig. 3—(a) Three-port network with detector. (b)
Directional detector.
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Since only two RF ports are available with this com-

bination, the flow graph can be simplified considerably.

Fig. 3(b) shows this simplification. The symbols for the

coefficients are chosen with a directional coupler-

detector combination in mind. The directional coupler

is assumed to have a built-in termination in one end of

its secondary arm, and the other end of the secondary

arm is the third port which is terminated by a video de-

tector. The relationships involved are

Techniques by Means of Signal Flow Grnphs 209

the generator tuner reflection is lumped together with

the generator reflection as 179’ and the load tuner is repre-

sented as a general two-port network with coefficients

T,l, r,2 and T,. The analysis carried out in Appendix I

shows that 1’9’ can be made equal to any arbitrary value

by proper adjustment of the generator tuner (although

E varies with the adjustment), and r,l can be made any

arbitrary value by proper adjustment of the load tuner.

The solution for the meter reading M is

.- I ---- (D+ mtl) + r.(mt’ – mt1rt2 – m,,) IM . ~kfj’
(1 – rg’r2 – rg’rtm – rlrtl) – rL(rg’2vT,2 + rl~t’ + r,, – rg’mtlr,,) 1“

bl = rlal + Ta2,

bl = I’!az + Tal,

M = k(Ca~ + CDaJ,

sl,zrd
rl = .sI1 +

1 – s33rd ‘

S232rd

r2 = s22 +
1 – s33rd ‘

Su3S23rd
T . S21 + ———

1 – S33rd ‘

S31 SW
c= D=—.

~ – s33rd S31

These relationships are written directly through appli-

cation of the nontouching loop rule. Note that the path

al to ill is the main coupling direction involving an ef-

fective coupling coefficient C and the path a~ to ill is the

residual coupling direction involving the coupling factor

and effective directivity coefficient D. For a directional

coupler, the coupling factor as usually defined is 20 log

I 1/S3,1 while the directivity is 20 log ] SS1/S321 .

SINGLE COUPLER REFLECTOMETER

A reflectometer system for measuring the reflection

coefficient of a load is shown in Fig. 4. In this arrange-

ment a single directional-detector is used in conjunction

with two slide-screw tuners, one at each end of the

coupler. These tuners are for the purpose of canceling

residual signals which can cause a measurement error.

They consist of a probe of adjustable penetration pro-

jecting into the line through a slot along which the probe

position can be varied. In the flow graph of the system

Fig. 4—Single coupler reflectometer.

This assumes that connector or flange jcjint reflections

are lumped within the tuner networks and the coupler

coefficients I’1, llz, D are small comparecl to unity, All

third- and higher-order loops are negligible and second-

order loops involving rl or I’z are negligible. These ap-

proximations are quite valid for practical systems and

simplify the algebra considerably. Since the meter read-

ing J-I is not directly proportional to \ r L 1, the reflec-

tometer system as it stands cannot give an accurate

result. The procedure for achieving the accurate rela-

tionship is as follows:

1)

2)

3)

Adjust the load tuner: terminate the system with

a low-reflection phaseable load. The r~ term in the

denominator is then negligible by comparison

with the constant term, whereas the r L term in the

numerator is comparable to the constant term. As

the load is moved, the meter reading will vary, By

adjusting rtl such that no variation occurs, the

constant term in the numerator can be brought to

zero. This means I’~1 = – D/ T.

Adjust the generator tuner: the system is now

terminated with a phaseable short circuit. As this

is moved, the meter reading varies as a result of

the beating between the rL term and the constant

term in the denominator. By proper adj ustrnent

of rg’, the rL term can be made zero. That is

With this adjustment no variation in M occurs as

the short is moved.

The meter reading is now directly proportional to

] rL[ . That is IW=K[ I’~1 . The meter reading is

adjusted to the reference value of unity by adjust-

ment of a gain control. If now an unknown load

is connected to the system, the meter will accu-

rately measure the magnitude of its reflection co-

efficient. In a practical case it may be necessary to

apply corrections to the meter readings to take

account of small deviations of the detector law

from the meter law.
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PHASE MEASUREMENT OF A SMALL REFLECTION k~M

By a variation of the method just described, it is
CD C

E’ T* de I+TP d T,

possible to measure quite accurately the phase angle of
T

~’ r2 ~

a small reflection. ~

Fig. 5 shows the flow graph of the setup required for
Ti e-la I+r, e-14 T’

phase measurement. A third slide-screw tuner is in- Fig. 5—Phase measurement with single coupler reflectometer.

eluded just ahead of the load. Otherwise the flow graph

is identical to Fig. 4. The probe itself is represented as The maximum error in the measurement of the phase

a shunt discontinuity I?fl distant O and o from the tuner’s
angle is then sin–l (2 I t’] +2 \ 1’1’ I ). If the tuner probe is

two ports. The small residual reflections at the load end not lossless but has a small shunt conductance GP asso-

of the tuner are represented by the general two-port ciated with it the maximum error becomes

flow graph with co&icients I’,’, I’,’, T’, while the re-

sidual reflections at the other end are considered lumped
( )

sin-’ 21t’1 +2[r1’1 +: .

within the ports of the previous tuner network.
P

Assuming that rl, I’,, D, r,l, I’,z, I’1’, I’z’ are all small However, if the greatest accuracy is desired, the probe

compared to unity, the solution for the meter reading conductance could be measured and the phase angle

i!lis: corrected. If a slotted line with the same residual dis-

D + TI’il + TTt21’pe-2@ + TT~ze–2~@+@j(l + 2rp)I’1’ + TTt2T’2(1 + zrP)e–2’(8+d)rL

M z CkE’
l–~L(l)+~ L(2)...

The probe is first removed making r, zero, and 117~ ] is

then measured by the previous procedure of Fig. 4. Dur-

ing this procedure the tuner coefficient I’~1 will have been

adjusted to bring to zero the sum of all terms in the

numerator not involving rL. That is,

D + TI’~1 + TTt2e–2’(O+@)I’l’ = O.

The probe is now inserted and adjusted in depth and

position until ill is zero. The result is

– rpe+m

(
2 rile–m

rL = +,+
I + 2rp Tf2

)

or

Where t’ is the small deviation of T’ from unity,

(T’ = 1 +1’). For small reflections (less than 0.2) the

probe can be considered a pure shunt susceptance, in

which case,

r, =
– jBp

2 + jBp

and

rL g
jBp

e2~’$(1 — 2t’ + 21’1’e-2~$).
2 – jBp

Except for the error term in brackets, rL is the complex

conjugate of ?JP transformed through the line length +.

The phase angle can be determined by using a Smith

Chart or, solving for BP in terms of [ 17L I ,

/rL = 2+ – tan-’
{

(1 – \ rL~2)1/2

}lrLl “

continuities as the tuner is used, the effective load re-

flection measured would be

(
rl’

)
rL l+2t’+—.

rL

There is both a magnitude and a phase error. The error

in the phase angle would be of the order of

As an example, consider a case where a phase meas-

urement is required of a load whose reflection coefficient

has a magnitude of 0.03 (SWR = 1.06). Suppose the

tuner used for the measurement has a residual reflection

of 0.01. Then t’and I’1’ could be of the order of 0.01.

Gp/Bp can be of the order of 0.05. The maximum phase

error would be sin–l (0.09) or 5 degrees. If a slotted line

with a residual reflection of 0.01 were used to measure

the phase angle of the load reflection, the maximum

error would be of the order of sin–l (0.35), or 20 degrees,

not to mention the error which could occur through in-

ability to locate accurately the minimum in the standing

wave.

CONCLUSION

The chief advantages of flow graph over matrix alge-

bra in solving cascaded networks are the convenient

pictorial representation and the painless method of pro-

ceeding directly to the solution with approximations

being obvious in the process. The flow graph method is

particularly useful in analyzing a measurement tech-

nique to determine residual error magnitudes.

The reflectometer techniques described are mainly ap-

plicable to the measurement of small reflection loads.
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The use of tuners in the magnitude measurement results

in a cancellation of residual error signals. In the phase

measuring method, the residual error signals are merely

depressed since a further probe insertion is required to

make the measurement after “flattening” the system.

This depression becomes important when the residual

reflections in the system are of the same order of mag-

nitude as the reflection to be measured.

APPENDIX I

THE SLIDE-SCREW TUNER

The slide-screw tuner consists of a probe of adjustable

penetration projecting into a line through a slot along

which its position can be adjusted. The probe itself can

be regarded as a purely shunt discontinuity. In addition,

there are fixed discontinuities at the ends of the slot and

at the connectors or flange joints. It is desirable to lump

all the fixed discontinuities at the two ports of the net-

work. To show that this can be done, consider the flow

graph of a shunt discontinuity followed by a length of

Iossless line as in Fig. 6(a).

Here 6 is the electrical length of the line section and

r is the reflection coefficient of the discontinuity when

backed up with a matched load, The discontinuity can

be transferred to the other port as shown in Fig. 6(b).

In either case the scattering coefficients are

s,, = r, Stz = Fe–2’0, S1, = S,l = (1 + I’)e-~~.

If a further discontinuity IT is present at the right-hand

port, the two can be lumped together and described by

the flow graph of Fig. 6(c) where,

T=

e–fb(l + r)(l + r’)

1 – rr~e–M3 “

For small reflections, the tuner probe is a lossless shunt

discontinuity and is equivalent to a shunt capacitive

susceptance. The relationship between normalized sus-

ceptance Bp and probe reflection coefficient I’P is

The complete flow graph of a slide-screw tuner is shown

in Fig. 6(d) where all the fixed reflections beyond the

probe are now lumped at the two ports.

It is desirable to represent the tuner by a two-port

flow graph with three coefficients. In order that this be

(a)

=’
b, e-JP I+r a2

(b)

(c)

_
b, T, P 2

(d)

--t%---

(e)

Fig. 6—(a) Shunt discontinuity followed by a length of lossless line.
(b) Equivalent discontinuity referred to the other port. (c) Addi-
tional discontinuity included at the.port. (d). Complete flow graph
of the slide-screw tuner. (e) Equwalent side-screw tuner flow
graph.

useful, however, it is necessary to show that the SI1 and

Sz.2 coefficients can be made equal to any arbitrary value

by proper adjustment of r, and 6. This can lbe done in

two steps. Consider first the case with no discontinuity

at port 1. The S11 coefficient is then

rpe–zi+ + r2’e–2i(@+@) + 2rpr2’e–<2i(9+#)
———

1 – rpr2’f3-@

Consider the possibility of making this some arbitrary

value k. This is a simple problem to solve using a Smith

Chart. One would start with a reflection coefficient 17z’

at port 2 and move toward the generator until reaching

a point at which the reflection I’g’e-zje and the reflection

ke+~@ were represented on the chart by admittances

with the same conductance value. The probe would be

inserted at this point until its susceptance equalled the

difference between the susceptances at the points repre-

senting the two reflections.



212 IRE TRANSACTIONS

Stated analytically these conditions are

I–G–y’B’
rzle–Pf9 =

l+ G+jB”

Bp=B~– B’ [Bp positive].

Substitution of these conditions in the expression

ON MICROWAVE THEORY AND TECHNIQUES

for S11

above does give the result S11 = k. Since the S11 co-

efficient can be made equal to any arbitrary value k when

the fixed port- 1 reflection is absent, it is obvious that the

SII coefficient for the complete system can be made

equal to any arbitrary value a. The value is

I’1”(1 – krl’) + T12k
a=

1 – krl’ ‘

or

March

rl” – ~
k=

rl’’rl’ – Tlz – rl’~

The slide-screw tuner can now be represented as a two-

port device with three coefficients as shown in Fig. 6(e),

and we can conclude that rl or 1’2 can be made any

arbitrary value by adjustment of the probe.
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Stepped Transformers for Partially Filled

Transmission Lines*
D. J. SULLIVAN* AND D. A. PARKES~

Surnmarg-In recent years, partially-filled transmission lines

have been used to improve the characteristics of various ferrite and

garnet devices. Thk paper presents a generalized outline for deter-
mining the approximate effective guide wavelength and characteristic

impedance of two types of (dielectric-loaded) partially-filled trans-
mission line. The results are used to determine the geometries re-
quired for the design of optimum stepped transmission line trans-
formers. The stepped transitions are designed to yield a Tchebycheff-

type response for any given bandwidth. The measured results for
stepped transitions in partially filled coaxial lime and partially filled
double-ridge wavegnide are presented. The data are found to ap-
proximate the theory closely.

1. INTRODUCTION

D

I ELECTRIC-loading techniques,2 are frequently

used to improve the characteristics of certain

ferrite and garnet devices. It has been shown

that one method of obtaining a nonreciprocal device in

conventional coaxial or strip transmission line is to dis-

tort the dominant (TEM or Quasi-TEM) mode by use

* Manuscript received by the PGMTT, August 31, 1959; revised
manuscript received. December 7.1959.

T Spe&y Microwave Electronics Co., Clearwater, Fla.
1 P. H. Vartanian, J. L. Melchor, and W. P. Ayres, ‘lBroadband-

ing ferrite microwave isolators, ” 1956 IRE NATIONAL CONVENTION
RECORD, pt. 5, pp. 79–83.

2 E. A. Ohm, “A broadband microwave circulator, ” IRE TRANS.
ON MICROWAVE THEORY AND TECHNIQUES, vol. MTT-4, pp. 210–
217; October, 1956.

of a dielectric material.3,4 The nonreciprocal character-

istics of double-ridge waveguide components are also

often improved by supplementing the ferrite or garnet

with a dielectric material.5 The addition of this dielectric

material changes the characteristic impedance of the

transmission line, and this in turn introduces the prob-

lem of matching. Cohn has shown that for a given num-

ber of steps a Tchebycheff stepped transformer design

will give the minimum possible VSWR for a specified

bandwidth.G Three stepped transitions, in partially

filled transmission line, are shown in Fig. 1. The use of

a stepped transition will normally 1) substantially re-

duce the inherent VSWR of a device, 2) enable a specific

unit to be made considerably shorter or 3) result in a

compromise between the two.

3 B. J. Duncan, L. Swern, K. Tomiyasu, and J. Hannwacker,
“Design considerations for broadband ferrite coaxial line isolators, ”
PROC. IRE, vol. 45, pp. 483-490; April, 1957.

4 D. Fleri and G. Hanley, ‘(Nonreciprocity of dielectric loaded
TEM mode transmission lines, ” IRE TRANS. ON MICROWAVE THEORY
AND TECHNIQUES, vol. MTT-7, pp. 23–27; January, 19.S9.

5 E. Grimes, D. Bartholomew, D. Scott, and S. Sloan, “Broad-
band ridge waveguide ferrite devices, ” presented at the IRE National
Symposium on Microwave Theory and Techniques, Harvard Uni-
versity, Cambridge, Mass.; June 1–3, 1959.

6 S. B. Cohn, ‘{Optimum design of stepped transmission line trans-
formers, ” IRE TRANS. ON MICROWAVE THEORY AND TECHNIQUES,
vol. MTT-3, pp. 16–21; April, 1955.


