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and B is obtained from s by reversing the sign of . It
is obvious from (41) that 8; is much larger than «, for
A/v<1. For this reason an expansion of R in powers of
dw converges very slowly, but an expansion of 1/R in
powers of dw should converge rapidly. If higher powers
of 6w are again neglected, (14) is obtained from (40) and

2 2
<_E) = B2 — aa.

A simple expression for the bandwidth is obtained in the

(42)
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limit \/y<1. The «ay term of (42) can be neglected if
only the lowest order of A/v is taken into account. In
this approximation

Bo = 20/ en? - (43)
B8s 1 1 1 2 M ‘
1+7+—w<phﬁ~w-
a 2at e/ H+ 2zM

Eq. (15) is now obtained by expressing H in terms of
the resonance frequency.

Analysis of Microwave Measurement Techniques by

Means of Signal Flow Graphs*

J. K. HUNTONY

Summary—Microwave measurement techniques can be analyzed
more simply by using signal flow graphs instead of the customary
scattering matrices to describe the microwave networks used in the
measuring system. This is because the flow graphs of individual
networks are simply joined together when the networks are cas-
caded and the solution for the system can be written down by in-
spection of the over-all flow graph by application of the nontouching
loop rule. This paper reviews the method of setting up flow graphs
of microwave networks and the rule for their solution. A single di-
rectional-coupler reflectometer system for measuring the reflection
coefficient of a load is then analyzed by this method. The analysis
shows how augxiliary tuners can be used to cancel residual error
terms in the measurement of the magnitude of the reflection coeffi-
cient at a particular frequency. The analysis also shows how an addi-
tional tuner can be used to measure the phase angle of the reflection
coefficient. These reflectometer techniques are particularly useful
in the measurement of very small reflections.

INTRODUCTION

HE signal flow graph is a method of writing a set

of equations, whereby the wvariables are repre-

sented by points and the interrelations by directed
lines giving a direct picture of signal flow. The algebra
of flow graphs leading to solutions by direct inspection
has been developed by S. J. Mason and others at the
Massachusetts Institute of Technology.!* When micro-
wave network equations are written in scattering matrix
form the corresponding flow graph is particularly useful
because, in this case, the flow graph of a system of cas-

* Manuscript received by the PGMT, September 14, 1959; re-
vised manuscript received November 25, 1959.

1 Hewlett-Packard Co., Palo Alto, Calif.

1S, J. Mason, “Feedback theory—some properties of signal
flow graphs,” Proc. IRE, vol. 41, p. 1144-1156; September 1933.

28, J. Mason, “Feedback theory—further properties of signal
flow graphs,” Proc. IRE, vol. 44, pp. 920-926; July, 1956.

caded networks is constructed simply by joining to-
gether the flow graphs of the individual networks, and
the solution is then available directly.

One of the best applications of the flow graph method
is in the analysis of measuring techniques and the de-
termination of residual errors. It is the intention here to
review the mechanics of the method and to apply it in
analyzing the microwave reflectometer system used for
measuring the reflection coefficient of a load. This sys-
tem has been in general use for some time,? and has been
analyzed recently by Engen and Beatty* who showed
how tuners could be used to reduce residual errors to a
negligible value when measuring the magnitude of the
reflection coefficient. Their result will be derived here by
the flow graph method. In addition, a technique for
measuring the phase angle of the reflection coefficient
will be presented.

OnE- AND Two-PorT NETWORK FLOW GRAPHS

Fig. 1 shows some simple flow graphs used as building
blocks. In Fig. 1(a) the general two-port network is
shown as specified by its scattering matrix coefficients.
Here a; and a. are the complex entering wave ampli-
tudes, while b; and b, are the outgoing wave amplitudes
at ports 1 and 2 of the network. These are represented
in the flow graph as points or “nodes.” The nodes are

3 J. K. Hunton and N. L. Pappas, “The -hp- microwave reflectom-
eters,” Hewlett-Packard J., vol. 6, pp. 1-7; September—October;
1954.

4 G. F. Engen and R. W, Beatty, “Microwave reflectometer tech-
niques,” IRE TrANs. oN MicROWAVE THEORY AND TECHNIQUES,
vol. MTT-7, pp. 351-355; July 1959.
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Fig. 1—(a) Two-port network. (b) Load. (¢) Generator. (d) Video
detector. (e) Lossless line length. (f) Shunt admittance, (g) Series
impedance.
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related to one another by directed lines (signal flow)
marked with appropriate coefficients. These are the
scattering coefficients Sy1, Sie, Sa1, S and their mean-
ing is derived from

by = Sna+ 51202,
bz = S21(l1 + 522(12.

Here S, is the reflection coefficient b,/a; at port 1
when port 2 is terminated in a matched load (in this
case a2=0). .Sy, is the reflection coefficient bs/a2 at port 2
when port 1 is matched (e¢;=0). Sis is the transmission
coefficient bi/as from port 2 to port 1 when port 1 is
matched (¢,=0), and Ss; is the transmission coefficient
be/a1 from port 1 to port 2 when port 2 is matched
(@2=0). In all reciprocal networks Si2=S,:. The value
of each node in the flow graph is the sum of all signals
entering it, each signal being the value of the node from
which it comes multiplied by its path coefficient. The
independent variables a1 and a, in the equations repre-
sented by the flow graph are characterized by signal
flow directed into the graph.

Fig. 1(b) depicts a termination or load whose reflec-
tion coefhicient is I'y.

Fig. 1(c) shows a mismatched generator. Here E is the
wave amplitude at the port when the generator sees a
matched load (¢ =0) and T', is the reflection coefficient
looking into the port when E is zero.

Fig. 1(d) shows a video detector (such as a crystal or
a barretter mount). I'y is the detector reflection coeffi-
cient at the port, and k is a scalar conversion efficiency
relating the incoming wave amplitude to a meter read-
ing M. It is assumed that this meter is calibrated to take
account of the detector law so that & is independent of
signal level. It is also assumed that I'; is independent of
signal level. (Both these conditions are satisfied very
nearly with detectors used in reflectometer systems
when used in their proper operating range.)

Fig. 1(e) depicts a length of lossless transmission line.

Fig. 1(f) is a shunt discontinuity such as a junction
between two lines or a probe which can be considered as
a shunt admittance. The coefficient Si; =S =T is the
reflection coefficient which would be measured if the
discontinuity were followed by a matched load. The co-
etficient Si13=.S51=1+T follows from the fact that the
net wave amplitudes on either side of the discontinuity
must be equal. The coefficient I is related to the nor-
malized shunt admittance ¥ by

Y
Y42

Fig. 1(g) 1s a lumped series impedance. Here the co-
efficient T" is related to the normalized series impedance
Z by
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TrE “NonToUucHING Loor” RULE

When networks are cascaded it is only necessary to
cascade the flow graphs since the outgoing wave from
one network is the incoming wave to the next. This is
demonstrated in Fig. 2 where a network is placed be-
tween a generator and a load. The system now has only
one independent variable, the generator amplitude E.
The flow graph contains paths and loops. A “path” is a
series of directed lines followed in sequence and in the
same direction in such a way that no node is touched
more than once. The value of the path is the product of
all coefficients encountered en route. In the figure there
is one path from E to bs. It has a value .Sq;. There are
two paths from E to by, namely Si1 and Soil'2.S1e. A first
order “loop” is a series of directed lines coming to a
closure when followed in sequence and in the same direc-
tion with no node passed more than once. The value of
the loop is the product of all coefficients encountered en
route. A second-order loop is the product of any two
first-order loops which do not touch at any point and a
third-order loop is the product of any three first-or-
der loops which do not touch, and so on. In Fig. 2
there are three first-order loops, namely, I';S1;, Saol'z,
and T',S2:I'zS1s and there is one second-order loop
| RSTAY APS

The solution of a flow graph is accomplished by appli-
cation of the nontouching loop rule,® which, written
symbolically, is
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_ S21

"1 — I'ySu — Saelz — T'ySaiT2S1 + TpS1Seals
by . Su(l — SeeTz) + Sul'S12

- 1 — Swl';, '

Note that the generator flow graph is unnecessary
when solving for b;/a1, and the loops associated with it
are deleted when writing this solution. It is worth men-
tioning at this point that second- and higher-order loops
can quite often be neglected while writing down the solu-
tion if one has orders of magnitude for the various co-
efficients in mind.

THREE-PORT NETWORK

The flow graph of the general three-port network
with the third port terminated by a detector is shown in
Fig. 3(a). The equations described by the flow graph are

b1 = Suer + Sieas + Sisas,
by = Sua; + Saeae + Sasas,
bs = Sua; + Ssaae + Sssas,
as = bsI'y,

M = kys,

(note also that S1a=.S21, S13=531, S25 =32 for reciprocal
networks).

p_ PO =T IO® + T 1@ = X LHY + -

1— > L) + 2 L2) — 2 LB3) + - - -

Here > L(1) denotes the sum of all first-order loops.
>"L(2) denotes the sum of all second-order loops and so
on. Py, P, P, etc., are the values of all the various
paths which can be followed from the independent vari-
able node to the node whose value is desired. > L(1)®
denotes the sum of all first-order loops which do not
touch path P; at any point, and so on. In other words,
each path is multiplied by the factor in brackets which
involves all the loops of all orders which that path does
not touch. T is a general symbol representing the ratio
between the dependent variable of interest and the inde-
pendent variable. This process is repeated for each in-
dependent variable of the system and the results are
summed.

As examples of the application of the rule, the trans-
mission b./E and the reflection coefficient bi/a, are
written as follows:

5 C. S. Lorens, “A Proof of the Nonintersecting Loop Rule for the
Solution of Linear Equations by Flowgraphs,” Res. Lab. of Electron-
ics, M.I.T., Cambridge, Mass., Quart. Prog. Rept., pp. 97-102;
January, 1956.

& W. W. Happ, “Lecture notes on signal flowgraphs,” from “Anal-
ysis of Transistor Circuits,” Extension Course, University of Cali-
fornia, Berkeley, Catalogue No. 834AB.

DA Pl = D LO® + T L@ )+ Pyl )
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Fig. 2—Cascading of a network between load and generator.
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Fig. 3—(a) Three-port network with detector. (b)
Directional detector.
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Since only two RF ports are available with this com-
bination, the flow graph can be simplified considerably.
Fig. 3(b) shows this simplification. The symbols for the
coefficients are chosen with a directional coupler-
detector combination in mind. The directional coupler
is assumed to have a built-in termination in one end of
its secondary arm, and the other end of the secondary
arm is the third port which is terminated by a video de-
tector. The relationships involved are
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the generator tuner reflection is lumped together with
the generator reflection as I',’ and the load tuner is repre-
sented as a general two-port network with coefficients
T4, T'yp and 7. The analysis carried out in Appendix [
shows that I') can be made equal to any arbitrary value
by proper adjustment of the generator tuner (although
E varies with the adjustment), and I';; can be made any
arbitrary value by proper adjustment of the load tuner.
The solution for the meter reading M is

(D+ 1TTy) + T (TT? — TTuly — DI'y)

M = |CRE

(1 — T,/Ty — Iy TuT?— T'Ty) — T(T/ T2 + T1T2 + Ty — T,/ T, Tw) |

by = Tay+ Tas,
by = Tsas Tlh,

M = k(Ca1 + CDaz),
S5
Ty = Su'l-"j—z—r
S93?T
T, 25224‘—“‘2‘3—1—7
1 — .S53T
T Syt
1 — Sl
Ss1 S
c=—"" . p=
1 — S5l Ss1

These relationships are written directly through appli-
cation of the nontouching loop rule. Note that the path
a1 to M is the main coupling direction involving an ef-
fective coupling coefficient C and the path as to M is the
residual coupling direction involving the coupling factor
and effective directivity coefficient D. For a directional
coupler, the coupling factor as usually defined is 20 log
| 1/S3:| while the directivity is 20 log | Ss1/.Sse).

SINGLE COUPLER REFLECTOMETER

A reflectometer system for measuring the reflection
coefficient of a load is shown in Fig. 4. In this arrange-
ment a single directional-detector is used in conjunction
with two slide-screw tuners, one at each end of the
coupler. These tuners are for the purpose of cancelling
residual signals which can cause a measurement error.
They consist of a probe of adjustable penetration pro-
jecting into the line through a slot along which the probe
position can be varied. In the flow graph of the system

METER
GENER?TOR
B by —t

T, sLioe | SLIDE
SCREW
TUNER

{x]
DIRECTIONAL LOAD
DETECTOR ]S»Sz?g

M
k

€ ¢

e
+
rv’{ rz{ . \{n m{ T;t {nz in

Fig. 4—Single coupler reflectometer.

This assumes that connector or flange joint reflections
are lumped within the tuner networks and the coupler
coefficients T'y, I'z, D are small compared to unity. All
third- and higher-order loops are negligible and second-
order loops involving T'; or T's are negligible. These ap-
proximations are quite valid for practical systems and
simplify the algebra considerably. Since the meter read-
ing M is not directly proportional to [I‘LI , the reflec-
tometer system as it stands cannot give an accurate
result. The procedure for achieving the accurate rela-
tionship is as follows:

1) Adjust the load tuner: terminate the system with
a low-reflection phaseable load. The I';, term in the
denominator is then negligible by comparison
with the constant term, whereas the I'; term in the
numerator is comparable to the constant term. As
the load is moved, the meter reading will vary. By
adjusting ;s such that no variation occurs, the
constant term in the numerator can be brought to
zero. This means I'yy=—D/T.

2) Adjust the generator tuner: the system is now
terminated with a phaseable short circuit. As this
is moved, the meter reading varies as a result of
the beating between the I';, term and the constant
term in the denominator. By proper adjustment
of I',/, the I';, term can be made zero. That is

_ | IPEAPIE S PP
12T, T — T2T2

g

With this adjustment no variation in M occurs as
the short is moved.

3) The meter reading is now directly proportional to
!I‘L[. That is ]L[=K]I‘L|. The meter reading is
adjusted to the reference value of unity by adjust-
ment of a gain control. If now an unknown load
is connected to the system, the meter will accu-
rately measure the magnitude of its reflection co-
efficient. In a practical case it may be necessary to
apply corrections to the meter readings to take
account of small deviations of the detector law
from the meter law,
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PHASE MEASUREMENT OF A SMALL REFLECTION

By a variation of the method just described, it is
possible to measure quite accurately the phase angle of
a small reflection.

Fig. 5 shows the flow graph of the setup required for
phase measurement. A third slide-screw tuner is in-
cluded just ahead of the load. Otherwise the flow graph
is identical to Fig. 4. The probe itself is represented as
a shunt discontinuity I', distant # and ¢ from the tuner’s
two ports. The small residual reflections at the load end
of the tuner are represented by the general two-port
flow graph with coefficients T/, Ty, 7”, while the re-
sidual reflections at the other end are considered lumped
within the ports of the previous tuner network.

Assuming that T'y, T'y, D, Ty, T'ye, Ty, T’y are all small
compared to unity, the solution for the meter reading
M is:
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Fig. 5—Phase measurement with single coupler reflectometer.

The maximum error in the measurement of the phase
angle is then sin=* (2|#/| +-2|T'|). If the tuner probe is
not lossless but has a small shunt conductance G, asso-
ciated with it the maximum error becomes

: Gy
sin=t( 2| /] + 2] T/ +=).
B,
However, if the greatest accuracy is desired, the probe

conductance could be measured and the phase angle
corrected. If a slotted line with the same residual dis-

D+ Ty + TT2T,e% 4+ TT 2 260+9)(1 4 2T )Ty + TT2AT'*(1 + 2T,)e20+oT,

M = CRE'

1= L)+ 2 L@ - -

The probe is first removed making T, zero, and |T'z]| is
then measured by the previous procedure of Fig. 4. Dur-
ing this procedure the tuner coefhcient I';; will have been
adjusted to bring to zero the sum of all terms in the
numerator not involving I'z. That is,

D+ TTy + TT2e 20+ = 0.

The probe is now inserted and adjusted in depth and
position until M is zero. The result is

— Tpet? /1 2T ¢21%
e T )
1+ 2T, \ 772 T2

— I‘pe+21¢

1+ 2F,

or

I'p = (1 — 2¢ + 27 e %%),

Where # is the small deviation of 77 from unity,
(I"=14+). For small reflections (less than 0.2) the
probe can be considered a pure shunt susceptance, in
which case,

_ 9B
" 2458,
and
7By . ) .
Ty - g20(1 — 2 4 21 %),
2 — 4B,

Except for the error term in brackets, I'z is the complex
conjugate of I', transformed through the line length ¢.
The phase angle can be determined by using a Smith
Chart or, solving for Bp in terms of |T'z|,

(- | PLP)W}‘

/Ty = 2¢ — tan™! {
— | T2

continuities as the tuner is used, the effective load re-
flection measured would be

Iy
Tz <1 + 2¢ +———>.
.

There is both a magnitude and a phase error. The error
in the phase angle would be of the order of

).

As an example, consider a case where a phase meas-
urement is required of a load whose reflection coefficient
has a magnitude of 0.03 (SWR=1.06). Suppose the
tuner used for the measurement has a residual reflection
of 0.01. Then # and Ty could be of the order of 0.01.
G,/ B, can be of the order of 0.05. The maximum phase
error would be sin—! (0.09) or 5 degrees. If a slotted line
with a residual reflection of 0.01 were used to measure
the phase angle of the load reflection, the maximum
error would be of the order of sin—! (0.35), or 20 degrees,
not to mention the error which could occur through in-
ability to locate accurately the minimum in the standing
wave.

ry
sin—1<2!t’{ + ’—
I3

CONCLUSION

The chief advantages of flow graph over matrix alge-
bra in solving cascaded networks are the convenient
pictorial representation and the painless method of pro-
ceeding directly to the solution with approximations
being obvious in the process. The flow graph method is
particularly useful in analyzing a measurement tech-
nique to determine residual error magnitudes.

The reflectometer techniques described are mainly ap-
plicable to the measurement of small reflection loads.



1960

The use of tuners in the magnitude measurement results
in a cancellation of residual error signals. In the phase
measuring method, the residual error signals are merely
depressed since a further probe insertion is required to
make the measurement after “flattening” the system.
This depression becomes important when the residual
reflections in the system are of the same order of mag-
nitude as the reflection to be measured.

APPENDIX [

THE SLIDE-SCREW TUNER

The slide-screw tuner consists of a probe of adjustable
penetration projecting into a line through a slot along
which its position can be adjusted. The probe itself can
be regarded as a purely shunt discontinuity. In addition,
there are fixed discontinuities at the ends of the slot and
at the connectors or flange joints. It is desirable to lump
all the fixed discontinuities at the two ports of the net-
work. To show that this can be done, consider the flow
graph of a shunt discontinuity followed by a length of
lossless line as in Fig. 6(a).

Here 8 is the electrical length of the line section and
T is the reflection coefficient of the discontinuity when
backed up with a matched load. The discontinuity can
be transferred to the other port as shown in Fig. 6(b).

In either case the scattering coefficients are

S11 = F, Szz = I‘(i*%ﬁ, Slz = Szl = (1 + I‘)e‘fﬁ.
If a further discontinuity I is present at the right-hand
port, the two can be lumped together and described by

the flow graph of Fig. 6(c) where,
Tet2B 4 TV + 27T

1=

1 —TTe 2
' 4 Te % 4 2T TVe 28
Iy = ’
1 —TITe %8
T e*(1+ 1)1+ 1)
B 1— I'lVet

For small reflections, the tuner probe is a lossless shunt
discontinuity and is equivalent to a shunt capacitive
susceptance. The relationship between normalized sus-
ceptance B, and probe reflection coefficient I', is

_ B
T 248,
The complete flow graph of a slide-screw tuner is shown
in Fig. 6(d) where all the fixed reflections beyond the
probe are now lumped at the two ports.

It is desirable to represent the tuner by a two-port
flow graph with three coefficients. In order that this be
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Fig. 6-——(a) Shunt discontinuity followed by a length of lossless line.
(b) Equivalent discontinuity referred to the other port. (¢) Addi-
tional discontinuity included at the port. (d) Complete flow graph
of tl}lle slide-screw tuner. (e) Equivalent side-screw tuner flow
graph.

useful, however, it is necessary to show that the Sy; and
Sss coefficients can be made equal to any arbitrary value
by proper adjustment of I', and 8. This can be done in
two steps. Consider first the case with no discontinuity
at port 1. The Si; coefficient is then

T e 2i¢ 4 T/ e 2i0+e) - 2T, Ty e ¥ @+®)

1 — T,Ty e

Consider the possibility of making this some arbitrary
value %. This is a simple problem to solve using a Smith
Chart. One would start with a reflection coefficient Iy’
at port 2 and move toward the generator until reaching
a point at which the reflection I'y’e=#% and the reflection
ket were represented on the chart by admittances
with the same conductance value. The probe would be
inserted at this point until its susceptance equalled the
difference between the susceptances at the points repre-
senting the two reflections.
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Stated analytically these conditions are

- ij
» T T o
2+ 7B,
1 —G—jB:
het2id = *
14+ G+ jB;
— —— ; /
Iy e kit i
1+ G+ jB
B,=B,— B [B, positive].

Substitution of these conditions in the expression for Si1
above does give the result S;;=%k. Since the Si; co-
efficient can be made equal to any arbitrary value & when
the fixed port-1reflection is absent, it is obvious that the
S11 coefficient for the complete system can be made
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equal to any arbitrary value a¢. The value is

TV'(1 — BTY) + T1%
a ==
1 — kT ’

or
1'11// — a

I‘l"l"‘l’ - T12 — Flltl

The slide-screw tuner can now be represented as a two-
port device with three coefficients as shown in Fig. 6(e),
and we can conclude that I'; or T'y can be made any
arbitrary value by adjustment of the probe.
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Stepped Transformers for Partially Filled

Transmission Lines*
D. J. SULLIVAN? axp D. A. PARKESt

Summary—In recent years, partially-filled transmission lines
have been used to improve the characteristics of various ferrite and
garnet devices. This paper presents a generalized outline for deter-
mining the approximate effective guide wavelength and characteristic
impedance of two types of (dielectric-loaded) partially-filled trans-
mission line. The results are used to determine the geometries re-
quired for the design of optimum stepped transmission line trans-
formers. The stepped transitions are designed to yield a Tchebycheff-
type response for any given bandwidth. The measured results for
stepped transitions in partially filled coaxial line and partially filled
double-ridge waveguide are presented. The data are found to ap-
proximate the theory closely.

1. INTRODUCTION

IELECTRIC-loading techniques!-? are frequently
D used to improve the characteristics of certain
ferrite and garnet devices. It has been shown
that one method of obtaining a nonreciprocal device in
conventional coaxial or strip transmission line is to dis-
tort the dominant (TEM or Quasi-TEM) mode by use

* Manuscript received by the PGMTT, August 31, 1959; revised
manuscript received, December 7, 1959.

t Sperry Microwave Electronics Co., Clearwater, Fla,

! P. H. Vartanian, J. L. Melchor, and W. P. Ayres, “Broadband-
ing ferrite microwave isolators,” 1956 IRE NATIONAL CONVENTION
REcoRrD, pt. 5, pp. 79-83.

2 E. A. Ohm, “A broadband microwave circulator,” IRE TraNs.
ON MICROWAVE THEORY AND TECHNIQUES, vol. MTT-4, pp. 210~
217; October, 1956.

of a dielectric material.? The nonreciprocal character-
istics of double-ridge waveguide components are also
often improved by supplementing the ferrite or garnet
with a dielectric material.® The addition of this dielectric
material changes the characteristic impedance of the
transmission line, and this in turn introduces the prob-
lem of matching. Cohn has shown that for a given num-
ber of steps a Tchebycheff stepped transformer design
will give the minimum possible VSWR for a specified
bandwidth.® Three stepped transitions, in partially
filled transmission line, are shown in Fig. 1. The use of
a stepped transition will normally 1) substantially re-
duce the inherent VSWR of a device, 2) enable a specific
unit to be made considerably shorter or 3) result in a
compromise between the two.

3 B. J. Duncan, L. Swern, K. Tomiyasu, and J. Hannwacker,
“Design considerations for broadband ferrite coaxial line isolators,”
Proc. IRE, vol. 45, pp. 483-490; April, 1957.

4 D. Fleri and G. Hanley, “Nonreciprocity of dielectric loaded
TEM mode transmission lines,” IRE Trans. oN MicrRowavE THEORY
AND TECHNIQUES, vol. MTT-7, pp. 23-27; January, 1959.

5 E. Grimes, D. Bartholomew, D. Scott, and S. Sloan, “Broad-
band ridge waveguide ferrite devices,” presented at the IRE National
Symposium on Microwave Theory and Techniques, Harvard Uni-
versity, Cambridge, Mass.; June 1-3, 1959.

¢ S. B. Cohn, “Optimum design of stepped transmission line trans-
formers,” IRE TRANS. ON MICROWAVE THEORY AND TECHNIQUES,
vol. MTT-3, pp. 16-21; April, 1955.



